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Optimization of Results Obtained from 
Integrals over Poisson Distributed Data 

1. Optimal Correlation Functions from Elastic 
Neutron Scattering Data in Simple Liquids 
WERNER A. SCHLUP* 
IBM Watson Laboratory 
Columbia University 
New York, New York 

Received July 13, 1967 

It is shown how the counting time at different scattering angles in particle scat- 
tering experimenta has to be chosen so that a physical quantity given by an integral 
over Poisson distributed data may be optimally determined; i.e., with the smallest 
possible uncertainties. The method i applied to the elastic scattering of thermal 
neutrons by liquid Argon. The optimal angle or time distribution of the measure- 
ments for obtaining the total and direct particle correlation functions haa been 
calculated from the known data. The result may be used as a starting point for 
improved measuremente. 

1. Introduction 

Many questions in the theory of particle scattering, where the number 
of scattered particles a t  a given angle is measured by counters lead for 
the evaluation of physical quantities to the following problem: How 
should the total available counting time be apportioned over the range 
of angles under investigation or alternatively, how should the density 
of scattering angles for fixed counting time per angle be chosen so that 
a physical quantity h expressed by the integral 

over a finite interval of integration (ab) of a variable q (e.g., the i3Catkrhg 
angle) can be determined M well as possible. The function R(p) of the 
integrand presumed is known while I(p) is obtained from the data 

*Present address: IBM Zurich Research Laboratory, Siiumerstrasse 4, 8803 
Riischlikon, Switzerland. 
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74 WERNER A. SCHLUP 

(with a statistical uncertainty) only at the discrete points q,,. The error 
depends on the number of counts and decreases with increasing counting 
time; i.e., the time during which the counts have been measured. The 
statistical error of h decreases also; but, since the contribution of the 
uncertainty in I(q) is weighted by K(q) ,  the points correspondmg to 
large K(q)  have to be measured more exactly for an optimal determi- 
nation of h. Beside the statistical error there is a discontinuity error or 
sum error arising from the fact, that the integral hrts to be evaluated as 
a sum over the points q,,, where measurement has been done. This sum 
error can be estimated by the Euler-McLaurin suni formula. 

I n  section 2 the statistical assumptions are formulated and the op- 
timization is defined. It is generalized to  integral transforms in section 3 
and it is applied in section 4 to the correlation functions from the elastic 
neutron scattering data of liquid &gon. Section5 contains some final 
remarks concerning the derived interparticle potential and the norma- 
lization of the data. 

2. "he Principle of Smallest Error 

The statistical assumptions will now be specified. The number of 
counts N,, = N(q,,) for the discrete points q,, with a 5 q1 < q 2 .  . . 
< q,, < . . . < q b are assumed to be (1) statistically independent 
(for pairs, triplets, etc.) and (2) Poisson distributed 

These assumptions are justified as long as the measurements are done 
(1) at m e r e n t  times, and (2) the probability of the occurrence of an 
event is proportional to the time element (Poisson process). 

A linear relation exists between I(q,) and the counting rate: 

where T(q,,) is the counting time a t  q,,. The coefficients A and A * t are 
known (nonstochaatic) parameters in the CsBe of the elastic neutron scat- 
tering. A, apart &om geometrical factors, is the incoming neutron %ux, 
which because of its high particle density can be measured very exlactly 
and therefore may be assumed to have a sharp distribution. t is the 
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INTEGRALS OVER POISSON DISTRIBUTED DATA 75 

coherent scattering ratio, an atomic property which can be measured un- 
der a high degree of accuracy in the solid. In the fhal remarks the 
conventional normalization (stochastic A) is discussed. 

In order to transform the integral (1.1) to a finite sum, we use the 
Euler-McLaurin s u m  formula generalized for nonequidistant points q,, . 
"hey are assumed to be generated by a normalized point density func- 

1 and 
n - -  .. 

n = 1, 2 , .  . ., N .  (2.5) 
2 

W n )  = - N 

From the results of appendix A the integral can be well approximated 
by a sum over a large number of terms: 

a 

By means of (2.6) the integral (1.1) can be expressed it6 
(2.6) 

where the second and third term vanishes for N -+ 00, while the first 
gives the well known Riemann definition of the integral since l /Ne(qn) 
= Aq,. 

To apply (2.7) to the given data I ,  . . . I,, it is necessary to defhe the 
boundary values I and If. We assume according to a lowest order 
approximation for the second term I(a) = I , ,  I'(a) = ( I ,  - I , )  Np(qJ 
and a similar expression for I@), I' (b)  in terms of IN-1 and I N .  The 
consequence of the boundary term in (2.7) will be discussed in appendix C. 

In the following we restrict ourselves to the main term (sum), a reliable 
approximation as long EM N is large. The average value for h which is 
a linear combination of statistically independent t e r n  is given by the 
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76 WERNER A. SCHLUP 

sum of the averages of the single terms; in the limit N + 00 with the I 
distribution known over a dense set in (ub), it is given by the integral 

b 
5 = 5 KTdq. 

a 

This means the average is by definition independent of the interval 
distribution e(q) as long as all intervals vanish in the limit. 

The variance, on the contrary, after replacing the sum for dh2 by an 
integral is 

where 

- 
Ah2 = - A h ; +  0 - 

N - (j3) 

b 

Ah; = K ~ A P - .  
- s -f (2.10) 

a 

It depends inversely on the point distribution and on the total number of 
points. The main term will be the smaller the higher the density of 
measured points. 
In the limit N + 00 (see appendix B) an mymptotic distribution for 

h will exist, provided that K ,  7, dIz and e are given functions and the 
semi-invariants of h exist. Under these assumptions the central limit 
theorem holds, i.e., the standardized variable h has a Gaussian distri- 
bution. 

We require that the point distribution e(q) be such that the error 
6h in the quantity h is a minimum and we identify the error with the square 
root of the variance 

Sh = (Ah")'/? (2.11) 

In  neglecting terms of the order 0 
tional problem : 

we have the following varia- 

-- - 0  6 Z  

6e 

with the normalization condition (2.4). The extremal solution 

(KAT)~'~ 
e(d = 

5 (R2A7)*/' dq 
a 

(2.12) 

(2.13) 
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INTEQRALS OVER POISSON DISTRIBUTED DATA 77 

is a poeitive function and represents a minimum (see appendixD). 
The optimal variance is then 

(2.14) 

It decreases a8 the number of points N is increased. 
If the point distribution is given a priori by the Wraction pattern 

e(q) = eo(q), as for the case of equally spaced scattering angles, we 
may choose the counting time T(q)  to optimize h, since, from Eqs. (2.1) 
and 12.21 

(2.15) 

only the product T(q) . e(q) will be fixed by the optimization under the 
condition of a given total time T ,  

N b 

T ,  = T(qJ = N TQ dq. (2.16) 
n- 1 a 

The time distribution of the measurements is then 

T eo = Const (K2(1 + ~1)”~). (2.17) 

Physically this means: the precision of the result depends only on the 
product of counting time and point distribution apart from higher terms 
in the Euler-McLaurin formula. For example, measuring a t  two neigh- 
boring points q l ,  qz for times T ,  , T, or measuring only in one interme- 
diate point (e.g., (al + q,)/2), for the total time T, + T, are equivalent 
procedurea. I n  this w e  T(q) has been doubled and p(q) halved. The 
density of points necessary to consider only the main term can be 
estimated from the Euler-McLawin formula. 

3. Optimization of the Correlation Functions 

In the theory of elastic, nonmagnetic scattering of neutrons in liquids 
the Werential cross section is given by 
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78 WERNER A. SCHLUP 

where No = number of atoms of the liquid in scatterer 
no = paxticle density in scatterer 
aj  = scattering length of i-isotope 
t = i i 2 / 2 ,  

and-means the average over the isotopes present. The particle pair 
density function 

nz(rl, rz) = nX(1 + h(rl - r3)) (3.2) 

defines the total correlation function h(r) which is related to I(q)  through 
a Fourier transform 

(3.3) 

A more direct connection with the interparticle potential has the direct 
correlation function c ( r )  introduced by Omstein, Zernike 

In approximate theories the potential can be l o ~ l l y  expressed in terms 
of h and c; for large r the simple asymptotic relation 

holds. 

meter ; (1.1) becomes the integral transform 

q =  -kT.c (3.5) 

h(r) is now (cf. section 2) a random,variable depending on one para- 

with kernel 

In order to generalize the concept of optimization we have to find 
what space average we want to be small. It seems reasonable to take 
the unweighted space average 

where the integration goes over a spherical shell with the thickness R 
around r : 

r - R/2 < lr'l < r + R/2 (3.9) 
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INTEGRALS OVER POISSON DISTRIBUTED DATA 79 

If the condition 
(3.10) 

is f U e d  the integration goes over many oscillations with nearly con- 
stant amplitude. The average thus becomes independent of R. The 
averaged variance has the kernel 

(3.11) 

TI& gives the optimal point distribution for the determination of h 

(3.12) 

a 

The meanvalue and variance of c can be found approximately by mum- 
ing that the distribution of I is rather sharp and 

% (1 +q2. (3.13) 

I 
We can therefore use a Taylor expansion for 

I dl" 
(577) =( l+T)"  (3.14) 

The space averaged variance of c will be 
b 

and the optimal point density for c correspondingly 

( z F ) 1 / 2  

(1 + 7)2 P 
e c ( d  = 

a 

Introducing the obtained densities gives for the optimal variance 

(3.16) 

(3.17) 
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80 WERNER A. SCHLUP 

The errors will be the smaller the larger r.  Since generally h and c de- 
crease faster than 1/r and small r values do not satisfy (3.10), the opt,i- 
mization will be useful in practice only in a range of medium separation. 

4. Application of the Optimization to the Correlation Functions of Liquid 
Argon' 

For the evaluation of the optimal point density distribution it i s  ne- 
which should have the data cessary to know the exact meanvalue 

normalization property 
m 

0 

A series of measurements will give a good meanvalue which, however, 
does not fulfill the condition (4.1) exactly. But starting from it, we could 
find a good point distribution which would make a better determination 
possible. Again, this would improve the optimal point distribution and 
so on. After a few steps practically the best distribution for a given total 
time could be obtained. 

As a good meanvalue we use the neutron scattering data of Hemhaw(') 
for liquid Argon at  84 OK and a neutron wavelength ;I = 1.04 A. The 
optimization is done with respect to both correlation functions h(r) 
and c ( r ) ,  but with the integration over q going from a =  q = 0 to 
b = Q = 7.15 8. This assumes an extrapolation of the data to zero 
wavevector which can be accomplished by using the relation 

(4.2) I (o )  = no d+h(r) = -1 + kTn, * xT 
where xT is the isothermal compressibility. 

The optimization introduced in the preceding sections can now be 
calculated explicitly. When h(r) is optimal then the normalized point 
distribution is given in Figure 1. The density of the points where the 
measurements should be made is linear with q according to (3.12) and, 
therefore, also essentially linear in the angle 0(8/2 5 35")) but modulated 
with (m)lPJ or (1 + tp''). ph  will exhibit a maximum near the point 
where f has a sharp maximum. The same is true for the minima. This 
means in points of high intensity one should measure with higher accuracy 
(denser pointa or a longer time) and additionally larger angles have to 
be determined more exactly in order to be able to derive good h(r) from 
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IXTEQRALS OVER POISSON DISTRIBUTED DATA 81 
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Figure 1. The full curve is the point distribution e and the dashed curve its 
integral P vemu~ scattering angle O/O,, in the case of optimal total correlation 
function h(r). A gives the emelleat angle measured. 

the data. The points for small q are only of miiior importance for the 
variance and for q = 0 one has even a vanishing density. This means 
the uncertainties arising from small q values are negligible. But, this 
does not mean that no measurements a t  all are necessary in a range of 
small q ;  a density q = 0 in (ab) gives an infinite contribution to  the 
variance. 

Figure 2 shows the point density for an optimal c(r) .  An extremely 
high maximum is obtained for small q values, since the denominator of 
(3.14) vanishes almost because of I(o)  2 -1. This maximum lies some- 
what below the lower cutoff on the measurements. 

At the point where I (q )  has a maximum ec exhibits a minimum; for 
larger q the density p c  is rather constant. If  one looks a t  the function 
P(q)  defined by (2.3), approximately 415 of all points should be chosen 
to measure the range below the first maximum of I (q ) .  Only a few points 
are then left to measure in the remaining interval. It is therefore neces- 
sary to convince oneself that the s u m  error in (2.6) is still negligible, 
otherwise higher order terms have to be considered in the Euler- 
McLaurin formula. 
5 a  
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82 WERNER A. SCHLUP 

Figure 2. The full curve is the point distribution e and the dashed curve its 
integral P vemus scattering angle 6/Om, in the case of optimal direct correlation 
function c(T) .  A gives the smallest angle measured. 

The optimal point distribution for h and c are therefore very different 
and if the incoherent part of the scattering is negligible (t = 1) the follow- 
ing relation holds 

ec = Const. $. (4.3) 
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INTEGRALS OVER POISSOX DISTRIBUTED DATA 83 

This proves that h and c can never simultaneously be optimal. The better 
c the worse is h and vice versa. In  general c is characteristic for the pair 
potential and the distribution of figure 2 has to be adopted in the ex- 
periments. This fact emphasizes the extraordinary importance of I (q )  in 
the range before the first maximum of I (q ) .  Since this region has been 
covered only partly (-40%) until now by the experiment,, we cannot. 
expect great accuracy of the results available a t  present,. 

6. Final Remarks 

It has been shown that the space average of the correlation functions 
are optimal for a definite point or counting time distribution. The ques- 
tion is how much better the pair potential can be derived. This will 
be discussed within the approximate theories of Percus, Yevick(2) (PY) 
and the hypernetted chains(3) (HNC). In  both cases the pair potential 
can be locally represented by h and c; the meanvalue p and the vari- 
ance can be expressed by the (mixed) variances of h and c. This 
assumes the validity of a variance expansion like in (3.14) (see refer- 
ence 4). In  both cases the potential is given asyinptoticalIy by 
Eq. (3.5). Therefore it should be expected that an optimal c is of 
higher importance for an optimal pair potential. The numerical dis- 
cussion of the Argon data confirms this conjecture. The uncertainties 
6h and 6c show essentially a hyperbolic behanor according to Eq. (3.17). 
The individual structure of I(p) enters only through small deviations 
from this behavior which are less than 10% in the range of medium 
separation (3-10 A). Therefore the following relations hold approsi- 
niately ah,, - 0.9bh, 

bc,, - 3.5 bc, 

bh, - 2.0bh 

&, - 0.5 CSC, 

where bh, bc are the uncertainties for the equidistant angle measurements 
and subscripts h and c refer to optimization with respect to h and c. 
The product of errors bh . dc is much larger in the case of the h optiini- 
zation than for the c optiniization, where it is about the same as for equal 
angle spacing. Figures 3 and 4 gil-e the uncertainties for the interparticle 
potential derived from the HSC and the PT equations, respectively. 
It can be seen that the uncertainty in the potential reduces by a, factor 2 
if the optimization is clone uith respect to the direct correlation function. 
This increase in accuracy is clecisive for a critical discussion of the po- 
5 n* 
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84 WERNER A. SCHL.EP 
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I I I I I I I I I I 
10 

r t i ,  
Figure 3. The uncertaintiea in the potential derived from the HNC equation 

are given for the h optimization (upper curve) and the c optimization (lower curve). 
The dashed m e  belongs to equally spaced angles. The value of the potential 
depth for Argon is about 0.01 eV. 

.01 

01 1 I I I I I I I I I 10 
r (X) 

Figure4. The uncertainties derived from the PY equation in the same order aa 
in Figure 3. 
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INTEGRALS OVER POISSON DISTXIBUTED DATA 85 

tential itself, especially with respect to the Kohn effecd5) for the effective 
interaction in liquid metals. 

An additional statistical error in the evaluation of the data arises 
from the conventional normalizations by means of h(o) = -1 for every 
set of measurements. As stated earlier, it can be avoided by a highly 
accurate measurement of the incoming neutrons. I n  the former case 
the normalization constant A will be a stochastic variable which depends 
linearly on the N,,. The intensity I, is then a nonlinear function of the 
N,,. The mean value of I,, can be expanded in a variance expansion 
which contains additional t e r n  of the order 0(1/N) arising from the 
correlation of the normalization constant with N,, (see appendix E). As 
long aa the error in the normalization Aha(o) is small, we can use the 
variance expansion for h(r) with stochastic normalization, If ,  however, 
Aha(o) is large the error in the normalization influences strongly the 
conventional evaluation of the data compared to our method. 
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Appendix A 

The Euler-McLaurin sum formula(') for the sa.me distance of points 
and 0 5 a 5 1, M < N ( M ,  N integers) and L-times continuously dif- 
ferentiable functions f (z)  is 

N 

with the residual term 
A' 

B t  (5 - a) f'L'(s) dz. 
( - ) L - *  

R,=- s L! 
M 

B,(z)  are the Bernoulli polynomials defined by application of (A . l )  to 
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86 WERNER A. SCIILUP 

(A.4) 
and 

is the Bl(x) in 0 5 x 5 1 and its periodic continuation with period = 1. 
(A.l) allows us to express an integral as ( I )  a s u m  over contributions 

of equidistant points x,, = n + oc - 1, (11) the boundary values of the 
function and its derivatives, and (111) the residual term which is an inte- 
gral over the whole range (ab). If one applies (A. 1) to smooth, slowly 
varying functions, one can approximate the integral by the sum and 
vice versa. The sum error which arises consists of the contributions (11) 
and (111). In  general (111) does not vanish for L -+ 00 and therefore 
the sum of (11) is only semiconvergent; this i s  obvious when N -+ +m, 
M -+ -m and the function and all the derivatives vanish a t  the bound- 
aries (e.g., 2'). 

I n  order to generalize the ~ u m  formula (A-1), we introduce a contin- 
uous density function e whose L derivatives are all continuous with the 
following properties : 

B:(x) = Bdx - [xl) 

b 

e(q) > 0 in (d), edq = 1. (A.5) 
a 

e(q) generates a nonequidistant series of points q,, through 
9 

41) = N j e(d) dq' (A.6) 
a 

and 

(A.l) is then 
x ( q , J = & = n + a - - l  n = l , 2  , . . . ,  N .  

1, 

or for a density independent integrand g(q) (A.7) 
h 

The residual term will be 
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INTEGRALS OVER POISSON DISTRIBUTED DATA 87 

(A.8) and (A.9) represent the general one dimensional Euler-McLaurin 
s u m  formula. It consists again of the three parts = (I) + (11) + (111); 
(I) is the s u m  over the contributions in nonequidistant points q,,, (11) 
gives an analytic expression for the s u m  error whose last term is of 
the same order (in N )  as the residual term (1111, which can be estimated. 

The most convenient choice for a is B,(a) = 0 where the function 
itself ddes not appear in (11) and further all even terms in (11) vanish. 
The lowest nontrivial form of (A.l)  is given by L = 3 

Because of 
a .- 

the residual term can be estimated to be 

IR3)S-- . -  IdpI$.--&.&.:l. (A.12) 
216 N 3  

It is of lower order 0 - and can be neglected for large N compared to 

the second order derivative term. It should be mentioned that the 
largeness of N is mainly determined by the smoothness of the functions 

(a 
d 4 )  and @(a). 

Appendix B 
We want the limit distribution for h, when the number of points 

N -+ 00, but where the point distribution shall be assumed to be fixed. 
Further it is assumed that the central moments exist for every N that can 
be proved, as long as e $. 0 in (ab). A first order zero of e(q) at the boun- 
dary q = 0 arising for example from the optimization is harmless since 
K(q) has then a second order zero. 

The logarithm for the characteristic function rph(t) of h is 

7zi  (it)' 7 - Sh In (e ) = In ph( t )  = yh(t) = 
1=1  Z! 

6* 
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88 WEENEB A. S(sHLup 

where xh' are the semi-invariants for the random variable h. The average 
h = sh', and the higher shl can be expressed by the central moments 
only. Therefore 

h is after Eq. (2.7) a linear combination of statistically independent 
terms N 

h = c anIn 
n-1 

whose coefficients in lowest order in N are given by 

plus a corresponding contribution for the lower boundary. Since the 
characteristic function of independent variables have to be multiplied, 
the semi-invariants for h and In are related through 

I n  transforming the sum to an integral retaining only terms of lowest 
order (besides the integral) we find 

a 

the integral term is 0 

all correction terms vanish and we get Eq. (2.8). 

and the next of two orders higher. For 1 = 1 

The Poisson distribution (2.1) has the semi-invariants 

03-71 

From (B.6) and (B.7) follows that the semi-invariants Sh' even exist for 
a = 0 and e(q)  w q, K(q) w q2. 

; be- 
cause of 

We now consider the limit N -+ 00 for the variable J N ( h  - 
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only the second order term in (B.2) remains: 
b 

a 
The standardized variable 

h - 5  z = JN 
(Ahf)”2 

has a Gaussian distribution for N -+ 00: 

(B.lO) 

There are similar limit theorems for pairs of h values a t  Meren t  
points in the space. Because of the correlation of h(r) and h(r’) one finds 
for the standardized variables z and z’ a correlated Gaussian in the limit 
N -+ 00. 

Appendix C 

Apart from terms of O( l p 4 )  the variance dhz = shz follows from (B.6) 
h 

Thereby the boundary values have been constructed from the secant 
of the pink n = 1,2 and n = N - 1 ,  N .  

The variation of the space average of dh2 under the condition 
b 

Jedq=1 
a 

gives the well known solution with the additional results 

e(a)  = e ( b )  = 00 (C.3) 

in order to make the variation vanish at  the boundaries q = a, b .  Since 
the normalization should be fulfilled, the singularity in e should have a 
vanishing measure and would not contribute to the transformation s(q) 
a t  all. 
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The nature of the singularity will be obvious if one writes the boundary 
terms in ((2.1) under the integral with a delta function exhibiting a 
finite width of the order of the distance qz - q1 or qN - qNm1. This is 
consistent with the derivation which defines the boundary from the 
properties in the interior points n = 1,2 or n = N - 1, N .  If the width 
would vanish independently of N one could verify the result (C.3) stated 
above. 

Appendix D 

The variational problem in simplified notation is 
b 

a 

2 0  JG) The solution is 

The second variation in the solution is 
b 

a 

which is always positive for small departures from Po. 

Appendix E 

With the conventional normalization of the data (h(o) = -1) the 
correlation function can be written 

N 

C An(r) Nn A(,.) 

C An(o) Nn 
h(r)  = -a(r) + B - B  - (E.1) B N 

n-1 
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where 
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l N  
4 r )  = - c 444, 

t n = l  

B = a ( o )  - 1, 

and A,,(r) is essentially the kernel of the Fourier transform. We aMume 

which can be accomplished when N is large enough; (E.3) is well satisfied 
for Henshaw's data. Then again we can expand with respect to the 
variances of A and B 

The first terms give the contribution if the normalization is assumed to 
be sharp. The higher terms give corrections which generally for small r 
decrease the uncertainty. For r = 0, A = B and per definition h(o) = 1 
and dhz(0) = 0. 
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